Exercice 1 — Voir correction —

Soit E un \mathbb{R} -espace vectoriel.

- 1) Montrer que $p \in \mathcal{L}(E)$ est un projecteur si et seulement si $p^2 = p$, et que dans ce cas p est la projection sur Im(p) parallèlement à Ker(p).
- 2) Montrer que si p est un projecteur, on a l'équivalence suivante pour tout vecteur x dans E:

$$x \in \operatorname{Im}(p) \iff p(x) = x$$

En déduire que $Im(p) = Ker(p - Id_E)$.

3) Montrer que $s \in \mathcal{L}(E)$ est une symétrie si et seulement si $s^2 = \mathrm{Id}_E$, et que dans ce cas s est la symétrie par rapport à $\mathrm{Ker}(s - \mathrm{Id}_E)$ dans la direction de $\mathrm{Ker}(s + \mathrm{Id}_E)$.

- Exercice 2 — Voir correction —

Soit E un \mathbb{R} -espace vectoriel de dimension finie et soit $p \in \mathcal{L}(E)$.

- 1) Montrer que $q = \mathrm{id}_E p$ est un projecteur si et seulement si p est un projecteur. Exprimer dans ce cas $\mathrm{Ker}(q)$ et $\mathrm{Im}(q)$ en fonction de $\mathrm{Ker}(p)$ et $\mathrm{Im}(p)$.
- 2) Montrer que $s = \mathrm{id}_E 2p$ est une symétrie si et seulement si p est un projecteur. Exprimer dans ce cas $\mathrm{Ker}(s - \mathrm{id}_E)$ et $\mathrm{Ker}(s + \mathrm{id}_E)$ en fonction de $\mathrm{Ker}(p)$ et $\mathrm{Im}(p)$.

* * *
Exercice 3 — Voir correction —

Soit E un \mathbb{R} -espace vectoriel de dimension n. On appelle hyperplan de E tout sous-espace vectoriel de E de dimension n-1. Montrer que l'intersection de n-1 hyperplans de E est non nulle.

— Exercice 4 ————— Voir correction —

Soient E et F deux espaces vectoriels de dimension finie, et soit $f \in \mathcal{L}(E, F)$.

Soient E_1, E_2, \ldots, E_n des sous espaces vectoriels de E et F_1, F_2, \ldots, F_p des sous espaces vectoriels de F.

- 1) Montrer que $f(E_1 + E_2 + \dots + E_n) = f(E_1) + f(E_2) + \dots + f(E_n)$
- 2) Montrer que si f est injective et que la somme des E_i est directe, alors la somme des $f(E_i)$ est directe.
- 3) Montrer que $f^{-1}(F_1) + f^{-1}(F_2) + \cdots + f^{-1}(F_p) \subset f^{-1}(F_1 + F_2 + \cdots + F_p)$
- 4) Donner un exemple dans lequel l'inclusion précédente est stricte.

Exercice 5 — Voir correction —

Soit $E = \mathcal{C}^0([0,\pi],\mathbb{R})$, l'ensemble des fonctions continues de $[0;\pi]$ dans \mathbb{R} . Soient $F = \text{Vect}\left(\cos_{[[0,\pi]},\sin_{[[0,\pi]}\right)$ et $G = \{f \in \mathcal{C}^0([0,\pi],\mathbb{R}) \mid f(0) = f(\pi/2) = f(\pi)\}$.

- 1) Montrer que $E = F \oplus G$
- 2) Soit p la projection sur F parallèlement à G. Déterminer p(f) pour $f \in E$.

Exercice 6 — Voir correction —

Soit $E = \mathbb{R}^3$ et soient F = Vect((1, -1, 1)) et $G = \{(x, y, z) \in \mathbb{R}^3 \mid 2x - y - z = 0\}$.

- 1) Montrer que $E = F \oplus G$
- 2) Soit s la symétrie de E par rapport à F dans la direction de G. Déterminer la matrice représentative de s dans la base canonique de \mathbb{R}^3 .

Exercice 7 — Voir correction —

(ENS 2022) On considère l'ensemble

$$F = \{(x_1, ..., x_{2n} \in \mathbb{R}^{2n} \mid x_1 - x_2 + x_3 - x_4 + \dots + x_{2n-1} - x_{2n} = 0\}$$

et le sous-espace vectoriel G de \mathbb{R}^{2n} engendré par le vecteur u=(1,-1,1,-1,...,1,-1).

1) a) Montrer que F est un sous-espace vectoriel de \mathbb{R}^{2n} .

- b) Calculer sa dimension.
- 2) Montrer que F et G sont supplémentaires dans \mathbb{R}^{2n} .
- 3) Soit $x \in \mathbb{R}^{2n}$.
 - a) Donner le projeté de x sur F parallèlement à G
 - b) Donner le symétrique de x par rapport à F le long de G.

Exercice 8 — Voir correction —

Soit n un entier non nul. On note tr l'application trace définie par $\operatorname{tr}: \mathcal{M}_n(\mathbb{R}) \to \mathbb{R}, \ (m_{i,j})_{1 \leq i,j \leq n} \mapsto \sum_{i=1}^n m_{i,i}.$

- 1) Montrer que $\mathcal{M}_n(\mathbb{R}) = \text{Vect}(I_n) \oplus \text{Ker}(\text{tr}).$
- 2) On considère $p \in \mathcal{L}(\mathcal{M}_n(\mathbb{R}))$ le projecteur sur Vect (I_n) parallèlement à Ker(tr). Que vaut p(M) pour une matrice $M \in \mathcal{M}_n(\mathbb{R})$?

Exercice 9 — Voir correction —

Soit n un entier non nul et soit $E = \mathbb{R}_n[X]$. On considère l'application $u: E \longrightarrow \mathbb{R}_1[X], P \longmapsto P(0)X + P(1)$

- 1) Montrer que $u \in \mathcal{L}(E, \mathbb{R}_1[X])$
- 2) Montrer que $E = \mathbb{R}_1[X] \oplus \operatorname{Ker}(u)$

Exercice 10 — Voir correction —

Soit E un un \mathbb{R} -espace vectoriel de dimension finie, soit $s \in \mathcal{L}(E)$ une symétrie de E et soit $u \in \mathcal{L}(E)$ quelconque. Montrer que u et s commutent si et seulement si $\mathrm{Ker}(s-\mathrm{id})$ et $\mathrm{Ker}(s+\mathrm{id})$ sont stables par u.

* * *

Exercice 11 — Voir correction —

E un \mathbb{R} -e.v. de dimension $n \geq 1$ et soit $s \in \mathcal{L}(E)$ une symétrie. Montrer que $n - \operatorname{tr}(s)$ est un entier pair.

Exercice 12 — Voir correction —

Soit E un espace vectoriel de dimension finie et soient $p,q \in \mathcal{L}(E)$ deux projecteurs tels que $\mathrm{Im}(p) \subset \mathrm{Ker}(q)$. On pose $r = p + q - p \circ q$.

- 1) Montrer que r est un projecteur.
- 2) Montrer que $\operatorname{Ker}(r) = \operatorname{Ker}(p) \cap \operatorname{Ker}(q)$ et que $\operatorname{Im}(r) = \operatorname{Im}(p) \oplus \operatorname{Im}(q)$.

Exercice 13 — Voir correction —

Soient $p, n \ge 1$ deux entiers, $f \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$ et $g \in \mathcal{L}(\mathbb{R}^p, \mathbb{R}^n)$ tels que $g \circ f$ est un projecteur de rang p.

- 1) Montrer que $rg(g) \leq p$
- 2) En déduire que $\operatorname{Im}(g \circ f) = \operatorname{Im} g$ et que $\operatorname{Ker} g = \{0\}$
- 3) Montrer que pour tout $x \in \mathbb{R}^p$, g(f(g(x))) = g(x)
- 4) Montrer que $f \circ g = \mathrm{id}_{\mathbb{R}^p}$.

Le coin des Khûbes

Exercice 14 — Voir correction —

Soit E un espace vectoriel de dimension finie $n \in \mathbb{N}^*$ et soient a et b deux symétries de E.

- 1) Développer et simplifier $(a+b) \circ (a-b)$ et $(a-b) \circ (a+b)$.
- 2) Montrer que $\operatorname{Im}(a \circ b b \circ a) \subset \operatorname{Im}(a + b) \cap \operatorname{Im}(a b)$
- 3) Montrer enfin que $\operatorname{Im}(a \circ b b \circ a) = \operatorname{Im}(a + b) \cap \operatorname{Im}(a b)$.

Exercice 15 — Voir correction —

Soit $n \ge 1$ un entier.

- 1) Montrer que $s: \mathbb{R}_n[X] \longrightarrow \mathbb{R}_n[X], P(X) \longmapsto P(1-X)$ est une symétrie.
- 2) Soit $P \in \mathbb{R}_n[X]$. Montrer que les deux assertions suivante sont équivalentes :
 - (i) $\forall x \in \mathbb{R}, \ P(1-x) = P(x)$
 - (ii) la courbe représentative de P est symétrique par rapport à la droite $x=\frac{1}{2}$
- 3) Montrer que $P \in \text{Ker}(s \text{Id}_{\mathbb{R}_n[X]})$ si et seulement si le polynôme $Q(X) = P(X + \frac{1}{2})$ définit une fonction paire.
- 4) Montrer qu'une fonction polynôme est paire si et seulement si tous ses termes de degré impair sont nuls.
- 5) Vérifier que $\varphi: \mathbb{R}_n[X] \to \mathbb{R}_n[X], P(X) \mapsto P(X + \frac{1}{2})$ est un automorphisme et en déduire une base de $\operatorname{Ker}(s \operatorname{Id}_{\mathbb{R}_n[X]})$
- 6) En raisonnant de façon analogue, déterminer une base de $\operatorname{Ker}(s+\operatorname{Id}_{\mathbb{R}_n[X]})$

Soit n un entier supérieur ou égal à 2. Soit E un \mathbb{R} -espace vectoriel de dimension n. Soit s un endomorphisme de E vérifiant les propriétés suivantes :

- (i) $s \circ s = \operatorname{Id}_E$
- (ii) $s \neq \operatorname{Id}_E$
- (iii) $s \neq -\mathrm{Id}_E$

On considère l'application φ définie par $\varphi: \mathcal{L}(E) \to \mathcal{L}(E), f \mapsto \frac{1}{2}(s \circ f + f \circ s)$.

- 1) Montrer que φ est un endomorphisme de $\mathcal{L}(E)$.
- 2) Montrer que s est diagonalisable et que son spectre est égal à $\{-1,1\}$.

On notera dans la suite E_1 (resp. E_{-1}) le sous-espace propre de s associé à la valeur propre 1 (resp. -1).

3) Soit $f \in \mathcal{L}(E)$. Montrer l'équivalence suivante :

$$f \in \operatorname{Ker}(\varphi) \iff f(E_1) \subset E_{-1} \quad \text{et} \quad f(E_{-1}) \subset E_1$$

- 4) Soit λ une valeur propre de φ . Soit $f \in \mathcal{L}(E)$ un vecteur propre associé. Soit $x \in E_1$. Déterminer une relation entre f(x) et s(f(x)). Même question pour $x \in E_{-1}$.
- 5) Montrer que le spectre de φ est inclus dans $\{-1,0,1\}$.
- 6) Déterminer un polynôme $P \in \mathbb{R}[X]$ de coefficient dominant égal à 1 et de degré 3 tel que $P(\varphi) = 0$.

Correction des exercice

Correction de l'exercice 1 : Ce sont des questions de cours :

1) Si p est un projecteur, alors il existe F et G supplémentaires dans E tels que p est la projection sur F parallèlement à G

Pour tout x dans E, on écrit $x = x_F + x_G$ avec $x_F \in F$ et x_G dans G, donc $p(x) = x_F$ et:

$$p(p(x)) = p(x_F) = x_F$$

d'où p(p(x)) = p(x). On a bien $p^2 = p$.

Réciproquement, supposons que $p^2 = p$. Pour tout x dans E on peut écrire x = x - p(x) + p(x) et remarquer que $p(x - p(x)) = p(x) - p^2(x) = p(x) - p(x) = 0$ donc $x - p(x) \in \text{Ker}(p)$. Ainsi $x \in \text{Ker}(p) + \text{Im}(p)$. De plus, si $x \in \text{Ker}(p) \cap \text{Im}(p)$, alors x = p(x') pour un certain x' dans E, et p(x) = 0 donc $p^2(x') = 0$ et donc x = p(x') = 0 car $p^2(x') = p(x')$.

On a donc E = Ker(p) + Im(p) et $\text{Ker}(p) \cap \text{Im}(p) = \{0_E\}$ donc Im(p) et Ker(p) sont supplémentaires dans E. Enfin, pour tout x dans E, p(x) est la composante de x dans Im(p) donc p est bien la projection sur Im(p) parallèlement à Ker(p).

2) Si p est un projecteur, alors c'est la projection sur $\mathrm{Im}(p)$ parallèlement à $\mathrm{Ker}(p)$.

Pour tout x dans Im(p) on a x = p(x') pour un certain $x' \in E$, donc $p(x) = p^2(x') = p(x') = x$.

Réciproquement, si x = p(x) alors x appartient à Im(p) par définition. On a donc bien

$$x \in \operatorname{Im}(p) \iff p(x) = x$$

pour tout vecteur x dans E.

3) Supposons que s est une symétrie et montrons que $s^2 = \mathrm{Id}_E$.

Soient F et G supplémentaires dans E tels que s est une symétrie par rapport à F le Dans la direction de G. Pour tout vecteur x de E il existe $x_F \in F$ et $x_G \in G$ tels que

$$x = x_F + x_G$$

et on a:

$$s(x) = x_F - x_G$$

d'où:

$$s^{2}(x) = s(x_{F} - x_{G}) = x_{F} + x_{G} = x$$

donc $s^2 = \mathrm{Id}_E$.

Supposons que $s^2 = \mathrm{Id}_E$ et montrons que s est une symétrie. Pour tout vecteur x dans E, on peut écrire :

$$x = \frac{1}{2}(x - s(x)) + \frac{1}{2}(x + s(x))$$

en remarquant que $s(x-s(x))=s(x)-s^2(x)=s(x)-x=-(x-s(x))$ et que s(x+s(x))=s(x)+x=x+s(x), on a $x-s(x)\in \operatorname{Ker}(s+\operatorname{Id}_E)$ et $x+s(x)\in \operatorname{Ker}(s-\operatorname{Id}_E)$. On a donc montré que $E=\operatorname{Ker}(s+\operatorname{Id}_E)+\operatorname{Ker}(s-\operatorname{Id}_E)$. Montrons que cette somme est directe : soit $x\in \operatorname{Ker}(s+\operatorname{Id}_E)\cap \operatorname{Ker}(s-\operatorname{Id}_E)$, alors s(x)=-x et s(x)=x donc x=-x et donc x=0. Finalement : $E=\operatorname{Ker}(s+\operatorname{Id}_E)\oplus \operatorname{Ker}(s-\operatorname{Id}_E)$.

Enfin, comme on l'a déjà observé, pour tout $x \in E$ on a :

$$s(x) = s\left(\frac{1}{2}(x - s(x)) + \frac{1}{2}(x + s(x))\right)$$
$$= \frac{1}{2}(s(x) - x) + \frac{1}{2}(s(x) + x)$$
$$= -\frac{1}{2}(x - s(x)) + \frac{1}{2}(x + s(x))$$

donc s est bien la symétrie parallèlement à $Ker(s - Id_E)$ dans la direction de $Ker(s + Id_E)$.

Correction de l'exercice 2 :

1)

$$q$$
 est un projecteur \iff $(\mathrm{id}-p)^2=\mathrm{id}-p$ \iff $\mathrm{id}^2-\mathrm{id}\circ p-p\circ\mathrm{id}+p^2=\mathrm{id}-p$ \iff $\mathrm{id}-2p+p^2=\mathrm{id}-p$ \iff $p^2=p$ \iff p est un projecteur

De plus, on a alors

$$x \in \text{Ker}(q) \iff (\text{id} - p)(x) = 0$$

 $\iff x - p(x) = 0$
 $\iff p(x) = x$
 $\iff x \in \text{Im}(p)$

 $\operatorname{car} p$ est un projecteur

et

$$x \in \operatorname{Im}(q) \iff q(x) = x$$

 $\iff x - p(x) = x$
 $\iff p(x) = 0$
 $\iff x \in \operatorname{Ker}(p)$

 $\operatorname{car} q$ est un projecteur

donc $\operatorname{Ker}(q) = \operatorname{Im}(p)$ et $\operatorname{Im}(p) = \operatorname{Ker}(q)$.

2)

$$s$$
 est une symétrie \iff $(\mathrm{id}-2p)^2=\mathrm{id}$ \iff $\mathrm{id}-4p+4p^2=\mathrm{id}$ \iff $p^2=p$ \iff p est un projecteur

Dans ce cas on a

$$x \in \text{Ker}(s - \text{id}) \iff s(x) = x$$

$$\iff x - 2p(x) = x$$

$$\iff p(x) = 0$$

$$\iff x \in \text{Ker}(p)$$

et

$$x \in \text{Ker}(s+\text{id}) \iff s(x)+x=0$$

$$\iff x-2p(x)+x=0$$

$$\iff p(x)=x$$

$$\iff x \in \text{Im}(p)$$
car p est un projecteur

donc Ker(s - id) = Ker(p) et Ker(s + id) = Im(p)

Correction de l'exercice 3 : Il faut avoir l'idée de montrer par récurrence que pour tout entier $p, 1 \leq p \leq n-1$, $\dim(H_1 \cap \cdots \cap H_p) \geq n-p$ si $(H_1, ..., H_{n-1})$ est une famille d'hyperplans. Notons $\mathcal{P}(k)$ cette propriété. Pour k=2, $\dim(H_1 \cap H_2) = \dim(H_1) + \dim(H_2) - \dim(H_1 + H_2) \geq n-1+n-1-n=n-2$ car $H_1 + H_2 \subset E$ donc $\dim(H_1 + H_2) \leq n$. La propriété est donc vraie pour n=2.

Supposons que $\mathcal{P}(k)$ soit vraie pour un entier k donné, alors

$$\dim(H_1 \cap H_2 \cap \dots \cap H_{k+1}) = \dim(H_1 \cap H_2 \cap \dots \cap H_k) + \dim(H_{k+1}) - \dim((H_1 \cap H_2 \cap \dots \cap H_k) + H_{k+1})$$

$$\geq n - k + n - 1 - n$$

$$\geq n - (k+1)$$

par hypothèse de récurrence et car $\dim((H_1 \cap H_2 \cap \cdots \cap H_k) + H_{k+1}) \leq n$ d'après l'inclusion $((H_1 \cap H_2 \cap \cdots \cap H_k) + H_{k+1} \subset E$. Ainsi le résultat est vrai pour tout entier k donc l'intersection de n-1 hyperplans de E est de dimension supérieure ou égale à n-(n-1)=1, donc non nulle.

Correction de l'exercice 4:

1) Montrons l'inclusion dans le sens direct

donc $f(E_1) + f(E_2) + \cdots + f(E_n) \subset f(E_1 + E_2 + \cdots + E_n)$.

- Soit $y \in f(E_1 + E_2 + \dots + E_n)$. Alors il existe $x \in E_1 + E_2 + \dots + E_n$, y = f(x) donc il existe $(x_1, x_2, \dots, x_n) \in E_1 \times E_2 \times \dots \times E_n$ tel que $y = f(x_1 + x_2 + \dots + x_n) = f(x_1) + f(x_2) + \dots + f(x_n) \in f(E_1) + f(E_2) + \dots + f(E_n)$ donc $f(E_1 + E_2 + \dots + E_n) \subset f(E_1) + f(E_2) + \dots + f(E_n)$.

 Montrons l'inclusion réciproque. Soit $y \in f(E_1) + f(E_2) + \dots + f(E_n)$. Il existe $(y_1, y_2, \dots, y_n) \in f(E_1) \times f(E_2) \times \dots \times f(E_n)$ tel que $y = y_1 + y_2 + \dots + y_n$, donc il existe $(x_1, x_2, \dots, x_n) \in E_1 \times E_2 \times \dots \times E_n$ tels que $\forall i \in \{1, 2, \dots, n\}$, $y_i = f(x_i)$ et ainsi $y = f(x_1) + f(x_2) + \dots + f(x_n) = f(x_1 + x_2 + \dots + x_n)$ car f est linéaire. Ainsi, $y \in f(E_1 + E_2 + \dots + E_n)$
- 2) Supposons f injective et $E_1, E_2, \dots E_n$ en somme directe. Soit $(y_1, y_2, \dots, y_n) \in f(E_1) \times f(E_2) \times \dots \times f(E_n)$ tels que $y_1 + y_2 + \dots + y_n = 0$ Alors il existe $(x_1, x_2, \dots, x_n) \in E_1 \times E_2 \times \dots \times E_n$ tels que $\forall i \in \{1, 2, \dots, n\}, y_i = f(x_i),$ et $f(x_1) + f(x_2) + \dots + f(x_n) = 0$. Ainsi, $f(x_1 + x_2 + \dots + x_n) = 0$ donc $x_1 + x_2 + \dots + x_n = 0$ car f est injective. Or les E_i sont en somme directe donc $x_1 = x_2 = \dots = x_n = 0$. On en conclut que $y_1 = y_2 = \dots = y_n = 0$ donc que les $f(E_i)$ sont en somme directe.
- 3) Soit $x \in f^{-1}(F_1) + f^{-1}(F_2) + \dots + f^{-1}(F_p)$. Il existe $(x_1, x_2, \dots, x_p) \in f^{-1}(F_1) \times f^{-1}(F_2) \times \dots \times f^{-1}(F_p)$ tels que $x = x_1 + x_2 + \dots + x_p$, et $f(x) = f(x_1) + f(x_2) + \dots + f(x_p)$.

 Par hypothèse sur les x_i , on a $f(x_i) \in F_i$ pour tout $i \in \{1, 2, \dots, p\}$, donc $f(x) \in F_1 + F_2 + \dots + F_p$. On en conclut que $x \in f^{-1}(F_1 + F_2 + \dots + F_p)$, donc que $f^{-1}(F_1) + f^{-1}(F_2) + \dots + f^{-1}(F_p) \subset f^{-1}(F_1 + F_2 + \dots + F_p)$.
- 4) On considère $E = \mathbb{R}^2$ et $f \in \mathcal{L}(E, E)$ la projection sur Vect ((1,0)) parallèlement à Vect ((0,1)) On pose $F_1 = \text{Ker}(f)$ et $F_2 = \text{Vect}((1,1))$ (faire une figure). Alors $f^{-1}(F_1) = \{0\}$ et $f^{-1}(F_2) = \{0\}$, mais $F_1 \oplus F_2 = E$ donc $f^{-1}(F_1 + F_2) = E$. Ainsi, l'inclusion $f^{-1}(F_1) + f^{-1}(F_2) \subset f^{-1}(F_1 + F_2)$ est stricte.

Correction de l'exercice 5:

1) Soit $f \in F \cap G$. Il existe $(a, b) \in \mathbb{R}^2$ tels que $\forall x \in [0, \pi]$, $f(x) = a \cos x + b \sin x$. De plus, $f(0) = f(\pi/2) = f(\pi)$. Or f(0) = a, $f(\pi/2) = b$, et $f(\pi) = -a$. a = -a entraı̂ne a = 0 et donc $b = f(\pi/2) = f(0) = a = 0$, ainsi f = 0. On en conclut que $F \cap G = \{0_E\}$ donc F et G sont en somme directe.

Remarque: E n'est pas de dimension finie, on ne peut pas raisonner sur les dimensions pour conclure. <u>Montrons que</u> E = F + G Soit $f \in E$, raisonnons par analyse-synthèse et supposons qu'il existe $(a,b) \in \mathbb{R}^2$ et $g \in G$ tels que $\forall x \in [0,\pi], f(x) = a\cos(x) + b\sin(x) + g(x)$.

Alors

$$\begin{cases} f(0) &= a + g(0) \\ f(\pi/2) &= b + g(\pi/2) \\ f(\pi) &= -a + g(\pi) \end{cases}$$

en posant $c = g(0) = g(\pi/2) = g(\pi)$, on a donc

$$\begin{cases} a+c &= f(0) \\ b+c &= f(\pi/2) \\ -a+c &= f(\pi) \end{cases}$$

qui équivaut à

$$\begin{cases} a = \frac{f(0) - f(\pi)}{2} \\ b = f(\pi/2) - \frac{f(0) + f(\pi)}{2} = \frac{2f(\pi/2) - f(0) - f(\pi)}{2} \\ c = \frac{f(0) + f(\pi)}{2} \end{cases}$$

Réciproquement, soit $f \in E$, posons $a = \frac{f(0) - f(\pi)}{2}$ et $b = \frac{2f(\pi/2) - f(0) - f(\pi)}{2}$, et posons pour tout $x \in [0, \pi]$, $g(x) = f(x) - a\cos(x) - b\sin(x)$.

Alors $\forall x \in [0, \pi], f(x) = a\cos(x) + b\sin(x) + g(x)$ par construction, g est continue comme somme de fonctions continues, et

$$g(0) = f(0) - a$$

$$= f(0) - \frac{f(0) - f(\pi)}{2}$$

$$= \frac{f(0) + f(\pi)}{2}$$

$$g(\pi/2) = f(\pi/2) - b$$

$$= f(\pi/2) - \frac{2f(\pi/2) - f(0) - f(\pi)}{2}$$

$$= \frac{f(0) + f(\pi)}{2}$$

et

$$g(\pi) = f(\pi) + a$$

$$= f(\pi) + \frac{f(0) - f(\pi)}{2}$$

$$= \frac{f(0) + f(\pi)}{2}$$

donc $g(0) = g(\pi/2) = g(\pi)$. Ainsi, $g \in G$. Finalement $f \in F + G$ donc $E \subset F + G$. L'inclusion $F + G \subset E$ est évidente car toute somme de fonctions continues sur $[0, \pi]$ est continue sur $[0, \pi]$.

2) D'après la question précédente, pour toute fonction $f \in E$,

$$p(f): [0; \pi] \longrightarrow \mathbb{R}, \ x \longmapsto \frac{f(0) - f(\pi)}{2} \cos(x) + \frac{2f(\pi/2) - f(0) - f(\pi)}{2} \sin(x)$$

Correction de l'exercice 6 :

1) Soit $(x, y, z) \in F \cap G$. Alors $\exists a \in \mathbb{R}, (x, y, z) = a \cdot (1, -1, 1) = (a, -a, a)$. Comme $(x, y, z) \in G$ on a 2a - (-a) - a = 0 donc 2a = 0 donc a = 0. Ainsi (x, y, z) = (0, 0, 0), donc F et G sont en somme directe. Soit $(x, y, z) \in \mathbb{R}^3$. On raisonne par analyse-synthèse en supposant qu'il existe $a \in \mathbb{R}$ et $(x', y', z') \in G$ tels que

$$(x, y, z) = (a, -a, a) + (x', y', z')$$

Alors (x', y', z') = (x - a, y + a, z - a) avec 2(x - a) - (y + a) - (z - a) = 0 donc 2x - y - z = 2a donc

$$a = \frac{2x - y - z}{2}$$

On en déduit que

$$(x', y', z') = \left(\frac{y+z}{2}, \frac{2x+y-z}{2}, \frac{-2x+y+3z}{2}\right)$$

Réciproquement, pour tout $(x, y, z) \in \mathbb{R}^3$, en posant $a = \frac{2x - y - z}{2}$ et $(x', y', z') = (\frac{y + z}{2}, \frac{2x + y - z}{2}, \frac{-2x + y + 3z}{2})$ on a bien

$$(x, y, z) = (a, -a, a) + (x', y', z')$$

d'après les calculs précédents, et $(x', y', z') \in G$ car

$$2 \times \frac{y+z}{2} - \frac{2x+y-z}{2} - \frac{-2x+y+3z}{2} = 0$$

donc $(x, y, z) \in F + G$.

Finalement $E = F \oplus G$.

2) Pour tout $(x, y, z) \in \mathbb{R}^3$, on sait d'après la réponse à la question précédente que

$$(x,y,z) = \underbrace{\left(\frac{2x - y - z}{2}, -\frac{2x - y - z}{2}, \frac{2x - y - z}{2}\right)}_{\in F} + \underbrace{\left(\frac{y + z}{2}, \frac{2x + y - z}{2}, \frac{-2x + y + 3z}{2}\right)}_{\in G}$$

On a donc

$$s(x,y,z) = \left(\frac{2x-y-z}{2}, -\frac{2x-y-z}{2}, \frac{2x-y-z}{2}\right) - \left(\frac{y+z}{2}, \frac{2x+y-z}{2}, \frac{-2x+y+3z}{2}\right)$$

$$= \left(\frac{2x-2y-2z}{2}, \frac{-4x+2z}{2}, \frac{4x-2y-4z}{2}\right)$$

$$= (x-y-z, -2x+z, 2x-y-2z)$$

donc la matrice représentative de s dans la base canonique de \mathbb{R}^3 est $\begin{pmatrix} 1 & -1 & -1 \\ -2 & 0 & 1 \\ 2 & -1 & -2 \end{pmatrix}$

Correction de l'exercice 7:

- 1) a) F est l'ensemble des solutions d'un système linéaire homogène de 1 équations à 2n inconnues de rang 1, donc c'est un sous-espace vectoriel de dimension 2n-1 de \mathbb{R}^{2n} .
 - b) On peut aussi voir F comme le noyau de l'application linéaire $f: \mathbb{R}^{2n} \to \mathbb{R}$, $(x_1, ..., x_{2n}) \mapsto x_1 x_2 + x_3 x_4 + \cdots + x_{2n-1} x_{2n}$. Cette application est non nulle donc elle est de rang 1 (car $\text{Im}(f) \subset \mathbb{R}$ et dim(Im(f)) > 0), donc d'après le théorème du rang dim(F) = dim(Ker(f)) = 2n rg(f) = 2n 1.
- 2) Si $v = (x_1, ..., x_{2n}) \in F \cap G$ alors il existe un réel λ tel que $v = \lambda \dot{u}$ donc $v = (\lambda, -\lambda, \lambda, -\lambda, ..., \lambda, -\lambda)$. Comme $v \in F$ on a:

$$\lambda - (-\lambda) + \lambda - (-\lambda) + \dots + \lambda - (-\lambda) = 0$$

donc

$$2n\lambda = 0$$

et donc $\lambda = 0$, d'où v = 0 et on en conclut que $F \cap G = \{0_{\mathbb{R}^{2n}}\}$.

F et G sont en somme directe donc $\dim(F+G)=\dim(F\oplus G)=\dim(F)+\dim(G)=2n-1+1=2n$. Comme $F+G\subset\mathbb{R}^{2n}$ on en déduit par inclusion et égalité des dimensions que $F+G=\mathbb{R}^{2n}$. On a donc montré que $\mathbb{R}^{2n}=F\oplus G$.

3) Soit $x = (x_1, ..., x_{2n}) \in \mathbb{R}^{2n}$. Supposons qu'il existe un vecteur $y = (y_1, ..., y_{2n})$ dans F et un vecteur z = (a, -a, ..., a, -a) dans G (avec $a \in \mathbb{R}$) tels que

$$x = y + z$$

Alors

$$\begin{cases} y_1 &= x_1 - a \\ y_2 &= x_2 + a \\ y_3 &= x_3 - a \\ y_4 &= x_4 + a \\ & \vdots \\ y_{2n-1} &= x_{2n-1} - a \\ y_{2n} &= x_{2n} + a \end{cases}$$

et comme $y_1 - y_2 + \cdots + y_{2n-1} - y_{2n} = 0$ on a :

$$(x_1-a)-(x_2+a)+(x_3-a)-(x_4+a)+\cdots+(x_{2n-1}-a)-(x_{2n}+a)=0$$

d'où

$$a = \frac{x_1 - x_2 + x_3 - x_4 + \dots + x_{2n-1} - x_{2n}}{2n}$$

Réciproquement, pour un vecteur $x=(x_1,...,x_{2n})$ donné de \mathbb{R}^{2n} , si on pose $a=\frac{x_1-x_2+x_3-x_4+\cdots+x_{2n-1}-x_{2n}}{2n}$ et $y=(x_1-a,x_2+a,...,x_{2n-1}-a,x_{2n}+a)$ alors on vérifie facilement que $y\in F$ et $z=(a,-a,...,a,-a)\in G$ et que x=y+z. Cela donne la décomposition de x dans $F\oplus G$, ainsi:

- x=y+z. Cela donne la décomposition de x dans $F\oplus G$, ainsi :

 a) Le projeté de x sur F parallèlement à G est $(x_1-a,x_2+a,...,x_{2n-1}-a,x_{2n}+a)$ avec $a=\frac{x_1-x_2+x_3-x_4+\cdots+x_{2n-1}-a}{2n}$
 - b) Le projeté de x par rapport à F le long de G est

$$y-z = (x_1 - 2a, x_2 + 2a, x_3 - 2a, x_4 + 2a, ..., x_{2n-1} - 2a, x_{2n} + 2a)$$

Correction de l'exercice 8 :

1) Montrons que Vect (I_n) et Ker(tr) sont en somme directe.

Soit $M \in \text{Vect}(I_n) \cap \text{Ker}(\text{tr})$. Il existe $\lambda \in \mathbb{R}$ tel que $M = \lambda \cdot I_n$, donc $\text{tr}(M) = n\lambda$. Or tr(M) = 0 donc $\lambda n = 0$ et ainsi $\lambda = 0$. On en déduit que M = 0, donc finalement que $\text{Vect}(I_n) \cap \text{Ker}(\text{tr}) = \{0\}$.

Montrons que $\mathcal{M}_n(\mathbb{R}) = \text{Vect}(I_n) + \text{Ker}(\text{tr})$. On a déjà l'inclusion $\text{Vect}(I_n) + \text{Ker}(\text{tr}) \subset \mathcal{M}_n(\mathbb{R})$.

Soit $M \in \mathcal{M}_n(\mathbb{R})$. Raisonnons par analyse synthèse et supposons qu'il existe $\lambda \in \mathbb{R}$ et $M' \in \text{Ker}(\text{tr})$ tels que M = $\lambda \cdot I_n + M'$.

Alors $\operatorname{tr}(M) = n\lambda + \operatorname{tr}(M') = n\lambda$. On en déduit que $\lambda = \frac{\operatorname{tr}(M)}{n}$ et que $M' = M - \frac{\operatorname{tr}(M)}{n} \cdot I_n$.

Réciproquement, pour toute matrice $M \in \mathcal{M}_n(\mathbb{R})$, en posant $\lambda = \frac{\operatorname{tr}(M)}{n}$ et $M' = M - \frac{\operatorname{tr}(M)}{n} \cdot I_n$, on a $\lambda \cdot I_n + M' = M$, et $\lambda \cdot I_n \in \operatorname{Vect}(I_n)$ et $\operatorname{tr}(M') = \operatorname{tr}(M) - \frac{\operatorname{tr}(M)}{n} \operatorname{tr}(I_n) = \operatorname{tr}(M) - \frac{\operatorname{tr}(M)}{n} \times n = 0$ donc $M' \in \operatorname{Ker}(\operatorname{tr})$. Ainsi, toute matrice $M \in \mathcal{M}_n(\mathbb{R})$ appartient à $\operatorname{Vect}(I_n) + \operatorname{Ker}(\operatorname{tr})$, donc finalement $\mathcal{M}_n(\mathbb{R}) = \operatorname{Vect}(I_n) + \operatorname{Ker}(\operatorname{tr})$.

On en conclut que $\mathcal{M}_n(\mathbb{R}) = \text{Vect}(I_n) \oplus \text{Ker}(\text{tr}).$

Remarque: on peut aussi remarquer que $\dim(\operatorname{Vect}(I_n)) + \dim(\operatorname{Ker}(\operatorname{tr})) = 1 + n - 1 = n$ pour conclure en deux lignes.

2) D'après la question précédente, $p(M) = \frac{\operatorname{tr}(M)}{n} I_n$.

Correction de l'exercice 9:

1) Pour tout $P, Q \in \mathbb{R}_n[X]$ et tout $\lambda, \mu \in \mathbb{R}^2$, on a

$$u(\lambda P + \mu Q) = (\lambda P + \mu Q)(0)X + (\lambda P + \mu Q)(1)$$

$$= \lambda P(0)X + \mu Q(0)X + \lambda P(1) + \mu Q(1)$$

$$= \lambda (P(0)X + P(1)) + \mu (Q(0)X + Q(1))$$

$$= \lambda u(P) + \mu u(Q)$$

donc $u \in \mathcal{L}(E, \mathbb{R}_1[X])$.

2) Soit $P \in \mathbb{R}_1[X] \cap \text{Ker}(u)$. Il existe $a_0, a_1 \in \mathbb{R}$ tels que $P(X) = a_1X + a_0$. Puisque $P \in \text{Ker}(u)$, on a u(P) = 0 c'est à dire que le polynôme P(0)X + P(1) est le polynôme nul.

Or $P(0)X + P(1) = a_0X + a_1 + a_0$, ce polynôme est nul si et seulement si (a_0, a_1) vérifie $\begin{cases} a_0 = 0 \\ a_1 + a_0 = 0 \end{cases} \iff$ $\begin{cases} a_0 = 0 \\ a_1 = 0 \end{cases}$ donc finalement P = 0.

Ainsi $\mathbb{R}_1[X] \cap \text{Ker}(u) = \{0\}$. On en déduit que Ker(u) et $\mathbb{R}_1[X]$ sont en somme directe.

Montrons que $\mathbb{R}_1[X] \oplus \operatorname{Ker}(u) = E$. Remarquons d'abord que $\dim(\mathbb{R}_1[X]) = 2$ et $\dim(\operatorname{Ker}(u)) = n + 1 - \operatorname{rg}(u)$.

Montrons que u est surjective : soit $Q = aX + b \in \mathbb{R}_1[X]$ un polynôme fixé. On cherche $P = \sum_{k=0}^n a_k X^k \in \mathbb{R}_n[X]$ tel que u(P) = Q.

Il suffit d'avoir P(0)=a et P(1)=b, c'est à dire $a_0=a$ et $\sum_{k=1}^n a_k=b$. En posant $a_0=a$, $a_1=b-a$, et $a_k=0$ pour tout $k \ge 2$, on a $u(P) = u(a_1X + a_0) = aX + (b - a + a) = aX + b = Q$, donc P est un antécédent de Q.

 $n+1=\dim(\mathbb{R}_n[x])$. L'inclusion $\mathbb{R}_1[X]\oplus \mathrm{Ker}(u)\subset \mathbb{R}_n[X]$ entraine donc $\mathbb{R}_1[X]\oplus \mathrm{Ker}(u)=\mathbb{R}_n[X]$.

Remarque: Plus simplement, on peut se contenter de minorer la dimension de Ker(u) en constatant que $\dim(\mathbb{R}_1[X])$ 2, donc $-\operatorname{rg}(u) \ge -2$ et ainsi $\dim(E) - \operatorname{rg}(u) \ge n + 1 - 2$, d'où $\dim(\operatorname{Ker}(u)) \ge n - 1$ d'après le théorème du rang. Puisque Ker(u) et $\mathbb{R}_1[X]$ sont en somme directe,

$$\dim(\operatorname{Ker}(u)) \oplus (\mathbb{R}_1[X]) = \dim(\operatorname{Ker}(u)) + \dim(\mathbb{R}_1[X])$$

$$\geq n - 1 + 2$$

$$> n + 1$$

Comme $\mathbb{R}_1[X] \oplus \operatorname{Ker}(u) \subset E$ et que $\dim(E) = n+1$ on en déduit que $\mathbb{R}_1[X] \oplus \operatorname{Ker}(u) = E$.

Correction de l'exercice 10 : Sens direct : supposons que u et s commutent.

Soit $x \in \text{Ker}(s-\text{id})$. Alors s(x) = x, donc u(x) = u(s(x)) = s(u(x)) car u et s commutent. On en conclut que s(u(x)) - u(x) = s(u(x)) + s(u(x $0, \text{ donc } u(x) \in \text{Ker}(s-\text{id}). \text{ Ainsi, } \text{Ker}(s-\text{id}) \text{ est stable par } u.$

Soit $x \in \text{Ker}(s+\text{id})$. Alors s(x) = -x, donc u(x) = u(-s(x)) = -u(s(x)) = -s(u(x)) car u et s commutent. On en conclut que s(u(x)) + u(x) = 0 donc $u(x) \in \text{Ker}(s+\text{id})$. Ainsi Ker(s+id) est stable par u.

Sens indirect: supposons que $\operatorname{Ker}(s-\operatorname{id})$ et $\operatorname{Ker}(s+\operatorname{id})$ sont stables par u.s est une symétrie donc $E=\operatorname{Ker}(s-\operatorname{id}) \oplus \operatorname{Ker}(s+\operatorname{id})$. Soit $x \in E$, il existe $(x_1, x_2) \in \operatorname{Ker}(s-\operatorname{id}) \times \operatorname{Ker}(s+\operatorname{id})$ tels que $x=x_1+x_2$ et $s(x)=x_1-x_2$. Ainsi, $u(s(x))=u(x_1)-u(x_2)$ d'une part, et d'autre part $s(u(x))=s(u(x_1))+s(u(x_2))$. Or par hypothèse, $\operatorname{Ker}(s-\operatorname{id})$ et $\operatorname{Ker}(s+\operatorname{id})$ sont stables par u, donc $u(x_1) \in \operatorname{Ker}(s-\operatorname{id})$ et $u(x_2) \in \operatorname{Ker}(s+\operatorname{id})$. On en déduit que $s(u(x_1))=x_1$ et $s(u(x_2))=-u(x_2)$. Finalement, $s(u(x))=u(x_1)-u(x_2)=u(s(x))$, et ceci étant vrai quel que soit $x \in E$ on en conclut que s et u commutent.

Correction de l'exercice 11 : s est une symétrie donc $E = \text{Ker}(s - \text{id}_E) \oplus \text{Ker}(s + \text{id}_E)$.

En choisissant une base (e_1, e_2, \dots, e_r) de $\operatorname{Ker}(s - \operatorname{id}_E)$ et une base (e_{r+1}, \dots, e_n) de $\operatorname{Ker}(s + \operatorname{id}_E)$ on obtient une base $\mathcal{B} = (e_1, \dots, e_r, e_{r+1}, \dots, e_n)$ de E.

 $\mathcal{B} = (e_1, \dots, e_r, e_{r+1}, \dots, e_n)$ de \mathcal{B} .

Dans cette base, la matrice de s est la matrice par bloc $\operatorname{Mat}_{\mathcal{B}}(s) = \left(\frac{I_r \mid 0_{r,n-r}}{0_{n-r,r} \mid -I_{n-r}}\right)$.

Ainsi tr(s) = r - (n - r) = 2r - n (la trace d'un endomorphisme ne dépend pas de la base dans laquelle on écrit sa matrice représentative).

Finalement, n - tr(s) = 2n - 2r = 2(n - r) donc est un entier pair.

Correction de l'exercice 12:

1) De l'inclusion $\operatorname{Im}(p) \subset \operatorname{Ker}(q)$ on déduit que $q \circ p = 0$.

$$\begin{split} r^2 &= (p + q - p \circ q) \circ (p + q - p \circ q) \\ &= p^2 + p \circ q - p^2 \circ q + q \circ p + q^2 - q \circ p \circ q - p \circ q \circ p - p \circ q^2 + p \circ q \circ p \circ q \\ &= p + p \circ q - p \circ q + 0 + q - 0 - 0 - p \circ q + 0 \\ &= p + q - p \circ q \\ &= r \end{split}$$

donc r est un projecteur.

2) Si $x \in \text{Ker}(p) \cap \text{Ker}(q)$, alors r(x) = p(x) + q(x) - p(q(x)) = 0 + 0 - p(0) = 0 donc $x \in \text{Ker}(r)$. Réciproquement, si $x \in \text{Ker}(r)$, alors p(x) + q(x) - p(q(x)) = 0 (1). En composant par q de chaque côté on obtient $q^2(x) = 0$ car $q \circ p = 0$, donc q(x) = 0 et ainsi $x \in \text{Ker}(q)$. En reprenant l'égalité (1) on en déduit immédiatement p(x) = 0 donc $x \in \text{Ker}(p)$, finalement $x \in \text{Ker}(p) \cap \text{Ker}(q)$. On a donc bien $\text{Ker}(r) = \text{Ker}(p) \cap \text{Ker}(q)$.

Montrons que $\operatorname{Im}(r) = \operatorname{Im}(p) \oplus \operatorname{Im}(q)$

Soit $x \in \text{Im}(p) \cap \text{Im}(q)$. Alors $x \in \text{Ker}(q)$ car $\text{Im}(p) \subset \text{Ker}(q)$, donc $x \in \text{Ker}(q) \cap \text{Im}(q)$ et comme q est un projecteur Im(q) et Ker(q) sont en somme directe donc x = 0. On en déduit que $\text{Im}(p) \cap \text{Im}(q) = \{0\}$.

Soit
$$x \in \text{Im}(r)$$
. Il existe $y \in E$ tel que $p(y) + q(y) - p(q(y)) = x$. Or, $p(y) + q(y) - p(q(y)) = \underbrace{p(y - q(y))}_{\in \text{Im}(p)} + \underbrace{q(y)}_{\in \text{Im}(q)}$ donc

 $x \in \operatorname{Im}(p) + \operatorname{Im}(q)$. On a montré que $\operatorname{Im}(r) \subset \operatorname{Im}(p) + \operatorname{Im}(q)$.

Soit maintenant $x \in \text{Im}(p) + \text{Im}(q)$. Il existe $x_1 \in \text{Im}(p)$ et $x_2 \in \text{Im}(q)$ tels que $x = x_1 + x_2$.

 $x \in \text{Im}(r) \iff r(x) = x \text{ car } r \text{ est un projecteur. Or on a}$

$$r(x) = r(x_1) + r(x_2)$$

$$= p(x_1) + q(x_1) - p(q(x_1) + p(x_2) + q(x_2) - p(q(x_2))$$

Or, $p(x_1) = x_1 \operatorname{car} x_1 \in \operatorname{Im}(p), q(x_2) = x_2 \operatorname{car} x_2 \in \operatorname{Im}(q), \text{ et } q(x_1) = 0 \operatorname{car} \operatorname{Im}(p) \subset \operatorname{Ker}(q).$ On a donc

$$r(x) = x_1 + p(x_2) + x_2 - p(x_2)$$
$$= x_1 + x_2$$

donc r(x) = x, on en conclut que $x \in \text{Im}(r)$ donc que $\text{Im}(p) + \text{Im}(q) \subset \text{Im}(r)$, et finalement $\text{Im}(r) = \text{Im}(p) \oplus \text{Im}(q)$.

Correction de l'exercice 13:

- 1) D'après le théorème du rang, $rg(g) + \dim(Ker(g)) = \dim(\mathbb{R}^p) = p$. Ainsi, $rg(g) = p \dim(Ker(g)) \le p$
- 2) L'inclusion $\operatorname{Im}(g \circ f) \subset \operatorname{Im}(g)$ est évidente. De plus, $\operatorname{rg}(g) \leq p$ et $\operatorname{rg}(g \circ f) = p$ par hypothèse, ainsi $p = \dim(\operatorname{Im}(g \circ f)) \leq \dim(\operatorname{Im}g) \leq p$ donc toutes ces inégalités sont des égalités, on en conclut donc que $\operatorname{Im}(g \circ f) = \operatorname{Im}(g)$. Ainsi, $\operatorname{Im}(g) = p$ donc $\dim(\operatorname{Ker}(g)) = 0$ selon le théorème du rang, on en déduit que $\operatorname{Ker}(g) = \{0\}$.

- 3) Soit $x \in \mathbb{R}^p$. Alors $g(x) \in \text{Im}(g)$ donc $g(x) \in \text{Im}(g \circ f)$ d'après la question précédente. On en déduit que $g \circ f(g(x)) = g(x)$ car $g \circ f$ est un projecteur.
- 4) Pour tout $x \in \mathbb{R}^p$, g(f(g(x))) = g(x) donc g(f(g(x)) x) = 0. on en déduit que pour tout $x \in \mathbb{R}^p$, $f(g(x)) - x \in \text{Ker}(g)$ donc f(g(x)) - x = 0, et ainsi f(g(x)) = x. On a montré que $f \circ g = \text{Id}_{\mathbb{R}^p}$.

Correction de l'exercice 14:

1) On a:

$$(a + b) \circ (a - b) = a^2 - a \circ b + b \circ a - b^2 = -a \circ b + b \circ a$$

et

$$(a-b) \circ (a+b) = a^2 + a \circ b - b \circ a - b^2 = a \circ b - b \circ a = -(a+b) \circ (a-b)$$

- 2) Soit $x \in E$, $(a(b(x)) b(a(x)) = (a b) \circ (a + b)(x) = -(a + b)(a b)(x)$ d'après la question précédente donc appartient à Im(a b) et à Im(a + b).
- 3) Réciproquement, soit $y \in \text{Im}(a+b) \cap \text{Im}(a-b)$. Alors il existe $x_1, x_2 \in E$ tels que $y = (a+b)(x_1) = (a-b)(x_2)$. On a donc $(a-b)(y) = (a-b) \circ (a+b)(x_1) = a(b(x_1)) b(a(x_1))$ d'une part, et $(a+b)(y) = (a+b) \circ (a-b)(x_2) = b(a(x_2)) a(b(x_2))$ d'autre part.

$$2a(y) = (a \circ b - b \circ a)(x_1 - x_2)$$

Or $a^2 = \operatorname{Id}_E$ donc en composant par a on trouve :

En sommant ces deux égalités on obtient :

$$2y = (a^{2} \circ b - a \circ b \circ a)(x_{1} - x_{2})$$
$$= (b - a \circ b \circ a)(x_{1} - x_{2})$$
$$= ((b \circ a - a \circ b) \circ a)(x_{1} - x_{2})$$

donc $y = -\frac{1}{2}(a \circ b - b \circ a)(a(x_1 - x_2))$ et ainsi $y \in \text{Im}(a \circ b - b \circ a)$, ce qui prouve l'inclusion réciproque.

Correction de l'exercice 15:

- 1) s est clairement un endomorphisme de $\mathbb{R}_n[X]$: $s(\lambda P + Q)(X) = (\lambda P + Q)(1 X) = \lambda P(1 X) + Q(1 X) = \lambda s(P)(X) + s(Q)(X)$ et si $P = \sum_{k=0}^n a_k X^k$ alors $P(1 X) = \sum_{k=0}^n a_k (1 X)^k = \sum_{k=0}^n a_k \sum_{i=0}^k \binom{k}{i} (-1)^i X^i$ donc $\deg(P(1 X)) \leq n$. L'égalité $s^2 = \operatorname{id}$ est tout aussi claire : pour tout $P \in \mathbb{R}_n[X]$ on a s(s(P))(X) = s(P)(1 - X) = P(1 - (1 - X)) = P(X) donc s(s(P)) = P.
- 2) Supposons que P(1-X)=P(X). Alors, $P\left(\frac{1}{2}+X\right)=P\left(1-\left(\frac{1}{2}+X\right)\right)=P\left(\frac{1}{2}-X\right)$. On en déduit que la courbe représentative de P est symétrique par rapport à la droite $x=\frac{1}{2}$. Réciproquement, tout polynôme qui vérifie $P(\frac{1}{2}+X)=P(\frac{1}{2}-X)$ vérifie $P(1-X)=P(\frac{1}{2}+\frac{1}{2}-X)=P(\frac{1}{2}-(\frac{1}{2}-X)=P(X)$.

3)

$$P \in \text{Ker}(s - \text{id})$$
ssi $P(1 - X) = P(X)$

ssi la courbe représentative de P est symétrique par rapport à la droite $x = \frac{1}{2}$

<u>ssi</u> la courbe représentative de $P(X + \frac{1}{2}$ est symétrique par rapport à l'axe des ordonnées

 $\underline{\mathrm{ssi}}$ le polynôme $Q(X) = P\left(X + \frac{1}{2}\right)$ définit une fonction paire

4) Si $Q = \sum_{k=0}^{n} a_k X^k$ est un polynôme de $\mathbb{R}_n[X]$, alors

Q définit une fonction paire ssi Q(X) = Q(-X)

$$\underline{\mathrm{ssi}} \sum_{k=0}^{n} a_k X^k = \sum_{k=0}^{n} a_k (-X)^k$$

$$\underline{\mathrm{ssi}} \sum_{k=0}^{n} a_k (X^k - (-X)^k) = 0$$

$$\underline{\text{ssi}} \sum_{\substack{k=0\\k \text{ impair}}}^{n} 2a_k X^k = 0$$

ssi
$$\forall k \in [0, n], k \text{ impair}, a_k = 0$$

5) φ est clairement une application linéaire de $\mathbb{R}_n[X]$ dans $\mathbb{R}_n[X]$ et l'application $\mathbb{R}_n[X] \to \mathbb{R}_n[X]$, $P(X) \mapsto P(X - \frac{1}{2})$ est sa bijection réciproque.

D'après les questions précédentes on a

$$P \in \text{Ker}(s-\text{id})$$
 ssi $Q(X) = P(X+\frac{1}{2})$ définit une fonction paire
ssi $Q(X) = P(X+\frac{1}{2})$ a tous ses termes de degré impair nuls

ssi il existe
$$(q_0, q_2, \dots, q_{2E(n/2)}) \in \mathbb{R}^{E(n/2)+1}$$
 tel que $P\left(X + \frac{1}{2}\right) = \sum_{k=0}^{E(n/2)} q_{2k} X^{2k}$

où E(n/2) désigne la partie entière de n/2.

Ainsi, $\operatorname{Ker}(s-\operatorname{id})$ est l'image de $F = \operatorname{Vect}(1, X^2, X^4, \dots, X^{2E(n/2)})$ par l'automorphisme de $\varphi^{-1} : \mathbb{R}_n[X] \to \mathbb{R}_n[X], P(X) \mapsto \mathbb{R}_n[X]$ $P\left(X-\frac{1}{2}\right)$.

Une base de $\operatorname{Ker}(s-\operatorname{id})$ est donc $(\varphi^{-1}(1), \varphi^{-1}(X^2), ..., \varphi^{-1}(X^{2E(n/2)}))$, avec pour tout $k \in [0, E(n/2)]$ on a $\varphi^{-1}(X^{2k}) = 0$ $(X - \frac{1}{2})^{2k} = \sum_{i=0}^{2k} {2k \choose i} (-2)^{i-2k} X^{i}$

De même, $P \in \text{Ker}(s + \text{id}) \iff P(X) = -P(1 - X) \iff P\left(\frac{1}{2} + X\right) = -P\left(\frac{1}{2} - X\right)$.

Ainsi, en posant $Q(x) = P(x + \frac{1}{2})$ on trouve que $P \in \text{Ker}(s + \text{id})$ si et seulement si Q est impaire, si et seulement si tous ses coefficients de degré pair sont nuls (exercice).

On en déduit que $\operatorname{Ker}(s+\operatorname{id})$ est l'image de $F=\operatorname{Vect}\left(X,X^3,\ldots,X^{2E(n/2)-1}\right)$ par $\varphi^{-1}:\mathbb{R}_n[X]\to\mathbb{R}_n[X],P\mapsto$ $P\left(X-\frac{1}{2}\right)$. En effet, $P\in \operatorname{Ker}(s+\operatorname{id}) \Longleftrightarrow P\left(X+\frac{1}{2}\right)\in F \Longleftrightarrow \varphi(P)\in F \Longleftrightarrow P\in \varphi^{-1}(F)$.

Une base de $\operatorname{Ker}(s+\operatorname{id})$ est donc $(\varphi^{-1}(X), \varphi^{-1}(X^3), \dots, \varphi^{-1}(X^{2E((n-1)/2)+1}))$ avec pour tout $k \in [0, E((n-1)/2)], \varphi^{-1}(X^{2k+1}) = (X - \frac{1}{2})^{2k+1} = \sum_{i=0}^{2k+1} {2k+1 \choose i} (-2)^{i-2k-1} X^i.$

Correction de l'exercice 16:

1) Soient $(\lambda, \mu) \in \mathbb{R}^2$ et $(f, g) \in (\mathcal{L}(E))^2$. On a :

$$\varphi(\lambda \cdot f + \mu \cdot g) = \frac{1}{2}(s \circ (\lambda f + \mu g) + (\lambda f + \mu g) \circ s)$$
$$= \frac{1}{2}(\lambda(s \circ f - f \circ s)) + \frac{1}{2}(\mu(s \circ g - g \circ s))$$
$$= \lambda \varphi(f) + \mu \varphi(g)$$

 φ est linéaire et est bien à valeurs dans $\mathcal{L}(E)$ donc c'est un endomorphisme de E.

2) Montrons que $E = \text{Ker}(s - \text{Id}_E) \oplus \text{Ker}(s + \text{Id}_E)$:

Si $x \in \text{Ker}(s - \text{Id}_E) \cap \text{Ker}(s + \text{Id}_E)$ alors s(x) = x et s(x) = -x donc x = -x d'où x = 0, la somme est donc directe. Si $x \in E$, alors $x = \underbrace{\frac{1}{2}(x + s(x))}_{\in \operatorname{Ker}(s - \operatorname{Id}_E)} + \underbrace{\frac{1}{2}(x - s(x))}_{\in \operatorname{Ker}(s + \operatorname{Id}_E)} \operatorname{donc} x \in \operatorname{Ker}(s - \operatorname{Id}_E) + \operatorname{Ker}(s - \operatorname{Id}_E).$

$$\underbrace{\frac{2}{\text{Ker}(s-\text{Id}_{E})}}_{\text{EKer}(s+\text{Id}_{E})}\underbrace{\frac{2}{\text{EKer}(s+\text{Id}_{E})}}_{\text{EKer}(s+\text{Id}_{E})}$$

On a donc bien $E = \text{Ker}(s - \text{Id}_E) \oplus \text{Ker}(s + \text{Id}_E)$. E est somme directe de sous espaces propres associés aux valeurs propres 1 et -1, donc s est diagonalisable et $Spec(s) \subset \{-1, 1\}$.

Puisque $s \neq \mathrm{Id}_E$, 1 n'est pas la seule valeur propre de s, et puisque $s \neq -\mathrm{Id}_E$, -1 n'est pas la seule valeur propre de s. On a donc bien $Spec(s) = \{-1, 1\}.$

3) On a

$$f \in \text{Ker}(\varphi) \iff \frac{1}{2}(s \circ f + f \circ s) = 0$$

 $\iff s \circ f = -f \circ s$

Supposons que $f(E_1) \subset E_{-1}$ et $f(E_{-1}) \subset E_1$

Pour tout $x = x_1 + x_{-1} \in E = E_1 \oplus E_{-1}$ on a donc d'une part :

$$s(f(x)) = s(f(x_1)) + s(f(x_{-1})) = -f(x_1) + f(x_{-1})$$

car $f(x_1) \in E_{-1}$, et d'autre part :

$$f(s(x)) = (f(x_1 - x_{-1})) = f(x_1) - f(x_{-1})$$

et $f(x_{-1}) \in E_1$. On a donc bien s(f(x)) = -f(s(x)) pour tout $x \in E$ donc $f \in \text{Ker}(\varphi)$.

Réciproquement, supposons que $s \circ f = -f \circ s$. Soit $x_1 \in E_1$ et $x_{-1} \in E_{-1}$. Alors $x_1 = s(x_1)$ donc $f(x_1) = f(s(x_1)) = -s(f(x_1))$. Ainsi $f(x_1) \in \mathbb{E}_{-1}$ donc $f(E_1) \subset E_{-1}$

 $\text{De même, } x_{-1} = -s(x_{-1}) \text{ donc } f(x_{-1}) = -f(s(x_{-1})) = s(f(x_{-1})) \text{ d'où } f(x_{-1}) \in E_1 \text{ donc } f(E_{-1}) \subset E_1.$

4) Par hypothèse, $\varphi(f) = \frac{1}{2}(s \circ f + f \circ s) = \lambda f$.

Si $x \in E_1$ on a donc :

$$\frac{1}{2}s(f(x)) + \frac{1}{2}f(s(x)) = \lambda f(x)$$

donc

$$\frac{1}{2}s(f(x)) + \frac{1}{2}f(x) = \lambda f(x)$$

donc

$$s(f(x)) = (2\lambda - 1)f(x)$$

Si $x \in E_{-1}$ on a :

$$\frac{1}{2}s(f(x)) + \frac{1}{2}f(s(x)) = \lambda f(x)$$

donc

$$\frac{1}{2}s(f(x)) - \frac{1}{2}f(x) = \lambda f(x)$$

donc

$$s(f(x)) = (2\lambda + 1)f(x)$$

5) On reprend les hypothèses et notation de la question précédente. Puisque f est un vecteur propre de φ elle est non nulle. Comme $E = E_1 \oplus E_{-1}$, f(x) est non nul pour un vecteur x appartenant à E_1 ou à E_{-1} .

Si $x \in E_1$ et $f(x) \neq 0$, alors f(x) est un vecteur propre de s associé à la valeur propre $2\lambda - 1$, donc $2\lambda - 1 = 1$ ou $2\lambda - 1 = -1$, donc $\lambda = 1$ ou $\lambda = 0$.

Si $x \in E_{-1}$ et $f(x) \neq 0$, alors f(x) est un vecteur propre de s associé à la valeur propre $2\lambda + 1$ donc $2\lambda + 1 = 1$ ou $2\lambda + 1 = -1$, donc $\lambda = 0$ ou $\lambda = -1$.

Dans tous les cas, on a $\lambda \in \{-1,0,1\}$, donc $Spec(\varphi) \subset \{-1,0,1\}$.

6) Un candidat possible serait $P(X) = X(X-1)(X+1) = X^3 - X$, le polynôme dont les racines sont les valeurs propres possibles de φ .

On a pour tout $f \in \mathcal{L}(E)$:

$$s(f) = \frac{1}{2}(s \circ f - f \circ s)$$

$$\begin{split} s^2(f) &= \frac{1}{2} \left(s \circ \left(\frac{1}{2} s \circ f - \frac{1}{2} f \circ s \right) - \left(\frac{1}{2} s \circ f - \frac{1}{2} f \circ s \right) \circ s \right) \\ &= \frac{1}{4} f - \frac{1}{4} s \circ f \circ s - \frac{1}{4} s \circ f \circ s + \frac{1}{4} f \\ &= \frac{1}{2} (f - s \circ f \circ s) \\ s^3(f) &= \frac{1}{2} \left(s \circ \left(\frac{1}{2} f - \frac{1}{2} s \circ f \circ s \right) - \left(\frac{1}{2} f - \frac{1}{2} s \circ f \circ s \right) \circ s \right) \\ &= \frac{1}{4} s \circ f - \frac{1}{4} f \circ s - \frac{1}{4} f \circ s + \frac{1}{4} s \circ f \\ &= \frac{1}{2} (s \circ f - f \circ s) \\ &= s(f) \end{split}$$

Pour tout $f \in \mathcal{L}(E)$, $s^3(f) - s(f) = 0$ donc $s^3 - s = 0$ donc P(s) = 0.

